2 resultados para Hyperglycemia

em Université de Lausanne, Switzerland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plasma glucose excursion may influence the metabolic responses after oral glucose ingestion. Although previous studies addressed the effects of hyperglycemia in conditions of hyperinsulinemia, it has not been evaluated whether the route of glucose administration (oral vs. intravenous) plays a role. Our aim was to determine the effects of moderately controlled hyperglycemia on glucose metabolism before and after oral glucose ingestion. Eight normal men underwent two oral glucose clamps at 6 and 10 mmol/l plasma glucose. Glucose turnover and cycling rates were measured by infusion of [2H7]glucose. The oral glucose load was labeled by D-[6,6-2H2]glucose to monitor exogenous glucose appearance, and respiratory exchanges were measured by indirect calorimetry. Sixty percent of the oral glucose load appeared in the systemic circulation during both the 6 and 10 mmol/l plasma glucose tests, although less endogenous glucose appeared during the 10 mmol/l tests before glucose ingestion (P < 0.05). This inhibitory effect of hyperglycemia was not detectable after oral glucose ingestion, although glucose utilization was increased (+28%, P < 0.05) due to increased nonoxidative glucose disposal [10 vs. 6 mmol/l: +20%, not significant (NS) before oral glucose ingestion; +40%, P < 0.05 after oral glucose ingestion]. Glucose cycling rates were increased by hyperglycemia (+13% before oral glucose ingestion, P < 0.001; +31% after oral glucose ingestion, P < 0.05) and oral glucose ingestion during both the 6 (+10%, P < 0.05) and 10 mmol/l (+26%, P < 0.005) tests. A moderate hyperglycemia inhibits endogenous glucose production and contributes to glucose tolerance by enhancing nonoxidative glucose disposal. Hyperglycemia and oral glucose ingestion both stimulate glucose cycling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Diabetes mellitus (DM) increases tuberculosis risk while tuberculosis, as an infectious disease, leads to hyperglycemia. We compared hyperglycemia screening strategies in controls and patients with tuberculosis in Dar es Salaam, Tanzania. METHODS: Consecutive adults with tuberculosis and sex- and age-matched volunteers were included in a case-control study between July 2012 and June 2014. All underwent DM screening tests (fasting capillary glucose [FCG] level, 2-hour CG [2-hCG] level, and glycated hemoglobin A1c [HbA1c] level) at enrollment, and cases were tested again after receipt of tuberculosis treatment. Association of tuberculosis and its outcome with hyperglycemia was assessed using logistic regression analysis adjusted for sex, age, body mass index, human immunodeficiency virus infection status, and socioeconomic status. Patients with tuberculosis and newly diagnosed DM were not treated for hyperglycemia. RESULTS: At enrollment, DM prevalence was significantly higher among patients with tuberculosis (n = 539; FCG level > 7 mmol/L, 4.5% of patients, 2-hCG level > 11 mmol/L, 6.8%; and HbA1c level > 6.5%, 9.3%), compared with controls (n = 496; 1.2%, 3.1%, and 2.2%, respectively). The association between hyperglycemia and tuberculosis disappeared after tuberculosis treatment (adjusted odds ratio [aOR] for the FCG level: 9.6 [95% confidence interval {CI}, 3.7-24.7] at enrollment vs 2.4 [95% CI, .7-8.7] at follow-up; aOR for the 2-hCG level: 6.6 [95% CI, 4.0-11.1] vs 1.6 [95% CI, .8-2.9]; and aOR for the HbA1c level, 4.2 [95% CI, 2.9-6.0] vs 1.4 [95% CI, .9-2.0]). Hyperglycemia, based on the FCG level, at enrollment was associated with tuberculosis treatment failure or death (aOR, 3.3; 95% CI, 1.2-9.3). CONCLUSIONS: Transient hyperglycemia is frequent during tuberculosis, and DM needs confirmation after tuberculosis treatment. Performance of DM screening at tuberculosis diagnosis gives the opportunity to detect patients at risk of adverse outcome.